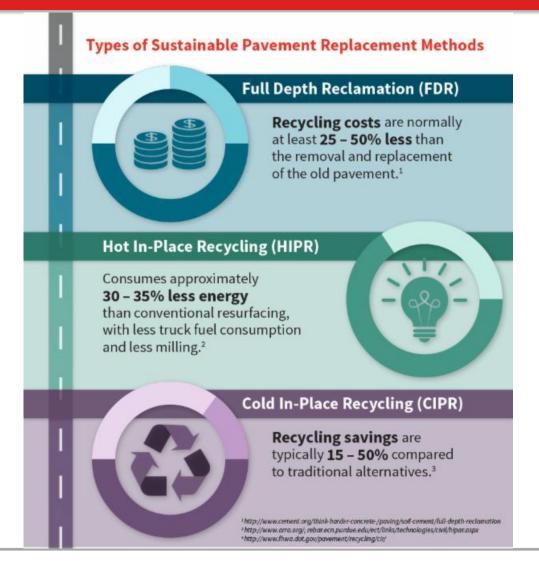
PAVEMENT REPLACEMENT BY SUSTAINABLE METHODS THAT SAVES TIME, MONEY AND THE ENVIRONMENT


Presented by:

Sam Yaghmaie PE LEED AP, Harris & Associates

Betty Bennett, P. Eng, Ontario Ministry of Transportation

August 18, 2014

Agenda

Benefit 1

SAVE TIME

Eliminates Hauling
Faster Process

Benefit 2

SAVE MONEY

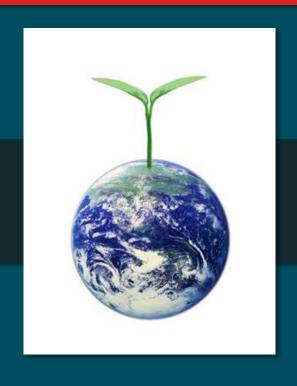
Less New Material

Less Time

Reduce Initial & Life Cycle Costs

Less Hauling

Benefit 3


SAVE THE ENVIRONMENT

Reduce Use of Natural Resources (Recycling)

Less Plant Processing

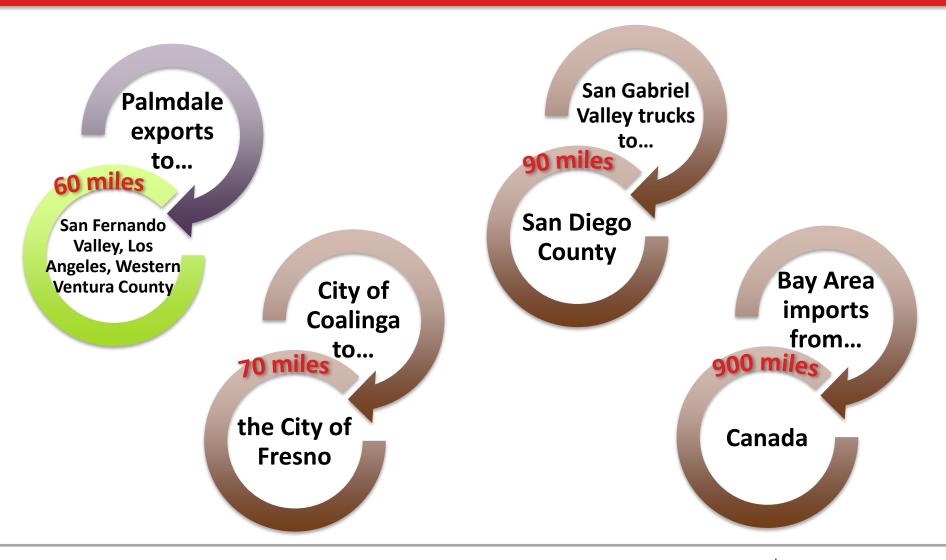
Less Trucking for Import

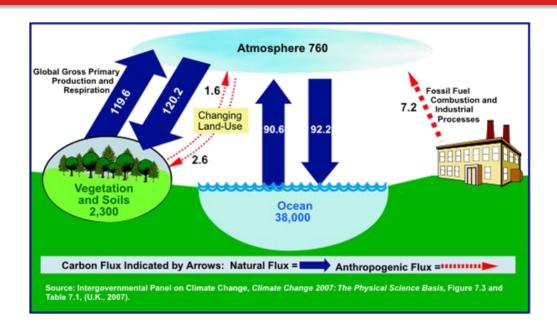
Reduce Greenhouse Gas Emissions

Safer Environment

Landfill

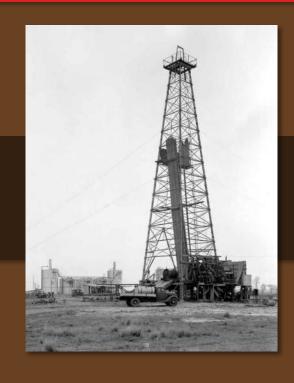
- 130M tons annual construction waste
- Less dumping into landfill
- Less hauling off of waste


Aggregate Shortage


- Permitted Aggregate Supply –
 4.3 billion tons
- 50-year Aggregate Demand –
 13.5 billion tons
- CA has a 16-year supply at current rates of consumption
- Permitting!

What Is Wrong With This Picture?

Safer Environment


Greenhouse Gases (Global Warming – 4.1 billion metric tons)

- Less aggregate import, use of natural resources, fuel for processing and transportation
- Less heat, fume at the Plant and on the Site

Why Then

- 1. 30 Years Proven Record
- 2. Energy Crises in Mid 1970
- 3. Gasoline Price Up 400%

Why Now

- 1. Financial Crises starting 2007-9
- 2. 2008-13 Global Recession
- 3. Transportation
 - Lack of funding sources (toll, carbon price, gas tax, fee-for-services charge)
 - ACEC D+ Rating
- 4. \$87B annual shortage to preserve \$ 1.75T assets

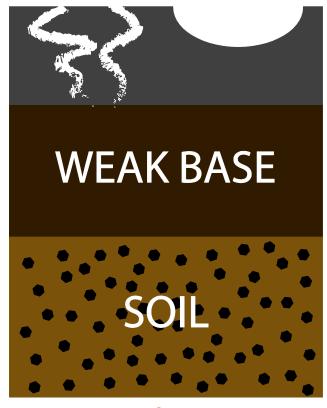
http://apwa.net/Resources/Reporter/Articles/2013/7/Transportation-challenges-

demand-a-fundabmental-cultural-shift

Thinking Out of the Box

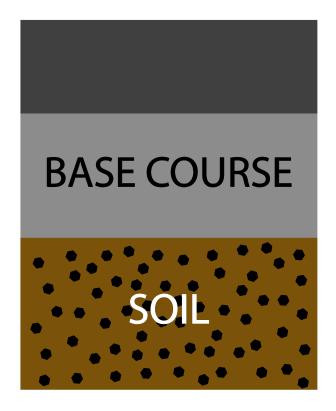
- FDR Full Depth Reclamation
- HIPR Hot In-Place Recycling
- CIPR Cold In-Place Recycling

FULL DEPTH RECLAMATION (FDR)

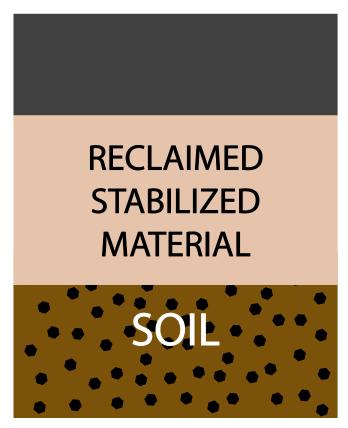

Recycling Existing Asphalt

What is FDR (Full Depth Reclamation)?

Pavement rehabilitation technique in which the full asphaltic pavement section and a predetermined portion of the underlying materials are uniformly crushed, pulverized or blended.



What is FDR?


Before: Aging & Distressed

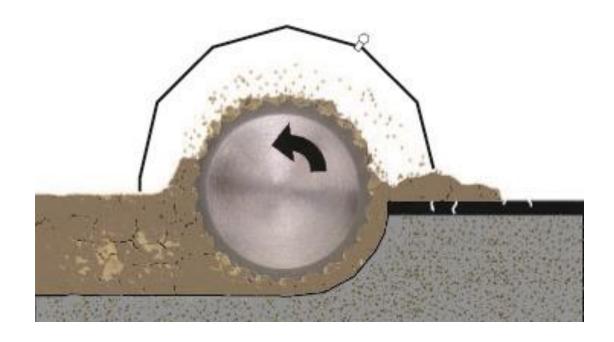
What is FDR?

Typical
Remove & Replace

What is FDR?

Reclaimed & Stabilized

*FDR: Structurally superior with 30% to 50% savings



Additive Application

- 3%-7% by dry weight
- Overdone cement content
 - o brittle
 - base crack reflects
 - over-shrink
- Clay
 - micro-cracking
- Slurry vs. Dry Spread (dust)
- CDF Non-FDR

Process

- Crush & pulverize asphalt/sub-base, base soils, depending on FDR depth
- Add water and additive (Cement/Lime, Fly Ash)

Process

Process (Video)

Construction Considerations

PCA Study of 79 FDR Over 3-Yr

- Pavement Condition Index
 - 88-97 (100 max.)
 - 60% severe cold
 - 260-2000 psi
 - No structural failure

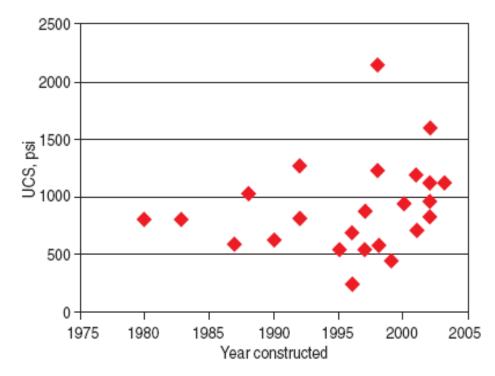


Figure 4. Unconfined compressive strength measurements.

When is FDR Appropriate?

- Pavement distress shallow subgrade problem
- Requires over 15-20% full-depth patching
- If you design a new curb/gutter/widening pavement -Do it!
 - Ease of traffic control
 - Uniform base
 - Min. diff. settlement

Weak Subgrade

- Deformation
 - shallow and deep ruts (shifting)
- Cracking (Load)
 - alligator
 - wheel path
- Cracking (Non-Load)
 - block (shrinkage)
 - transverse (thermal)
 - reflection

- Maintenance Patching
 - spray
 - skin
 - pothole
 - deep hot mix
- Ride Quality & Roughness
 - general unevenness
 - depressions (settlement)
 - high spots (heaving)

FDR Pros

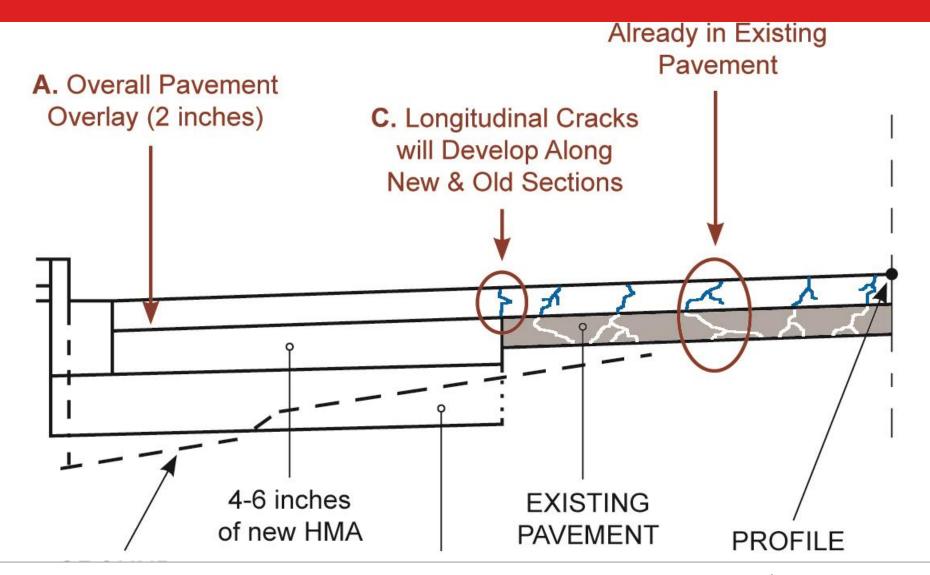
- Conserves
 - min. import
 - thinner section
- Reduce construction time days vs. weeks

30-50% Cost Savings

Lynnwood Project Cost Savings

Item No.	Item Description	Approx. Quantity	Unit Price	Amount Dollars Cents	FDR Cost adjustment	Explanation
A12	Removal of Pavement	7674 SY	\$ 6.00	\$ 46,032.00	(\$46,032)	No Removal
A19	Sawcutting	10721 LF	\$ 1.50	\$ 16,081.50	(\$12,000)	Min saw cutting at side streets only
A20	Roadway Excav. Incl. Haul	4840 CY	\$ 7.00	\$ 33,880.00	(\$33,880)	No road excavation
A21	Unsuitable Foundation Excav. Incl. Haul	968 CY	\$ 21.00	\$ 20,328.00	(\$20,328)	Not applicable
A51	CSBC	4930 T	\$ 18.00	\$ 88,740.00	(\$63,540)	11/2 inch 3/8 minus for final grading
A53	Planing Bituminous Pavement	6707 SY	\$ 2.00	\$ 13,414.00	(\$13,414)	Not applicable
A54	HMA Cl. 1/2" PG 58-22	6308 T	\$ 78.00	\$ 492,024.00	(\$180,000)	based on 4-inch HMA all over
A55	Temporary Pavement	755 T	\$ 139.00	\$ 104,945.00	(\$104,945)	Not applicable
A83	Flaggers and Spotters	5400 HRS	\$ 48.00	\$ 259,200.00	(\$45,000)	Saving based on 1 wk. vs. 4 wks., \$ 15K/wk.
FDR	\$.50/ft ³ of volume + \$.80 /yd ² of surface,	\$ 117/ton cement, q	uote from Plats Plus	6	\$110,000	one foot depth, 6% cement, assume 10% mark up for plats plus
Design	Fee for HWA				\$25,000	
	Total saving				(\$384,139)	

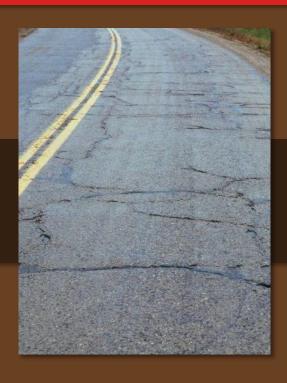
FDR Pros


Sustainable

- Less heat, fuel, air pollution
- No aggregate import less natural resource/processing/transport ation
- Less dumping waste into landfill
- Minimized Traffic Control

FDR Pros

Focus


FDR Pros

- Highly resistant to severe cold
- Method of freezing and thawing test of compacted soils-cement mixture (ASTM D560, AASHTOT136)
- Would the soil soften due to freezing and thawing resulting in volume changes and gradual break down of bonds of cementation?
- Heaving/loosing shear

FDR Cons

- Excess cement, reflecting cracks
- No new curbs and gutters (foot-long strip)
- Poor/soft subgrade
- Hot and dry weather
- Cracks not addressed
 - longitudinal, slippage, corrugation, raveling/flushing, slippiness (surface defects)

FDR Summary

HOT-IN-PLACE RECYCLING


Reusing Top Surface

Asphalt is Unique

Asphalt can be reused in its original location and on the same day without taking to a remote site for processing.

Asphalt Weakness

- The oil is 95% carbon & 5% lighter fractions that are subject to:
 - oxidization
 - leaching
 - evaporation
- Once depleted, the material becomes brittle and cracks under load

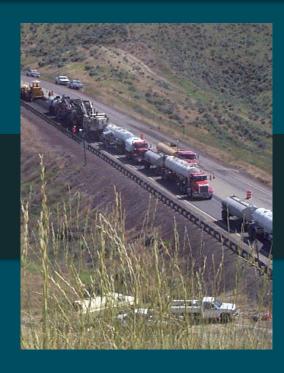
HIPR vs. CIPR

 HIPR involves from 40mm to 60mm of the asphalt surface. Cracks are limited to top 2-inch. CIPR is for material that is too deteriorated for HIPR, up to 100mm of the existing surface.

What is HIPR?

When is HIPR Appropriate?

- Any hot mix asphalt pavement with a stable base and adequate drainage
- Pavement should not exhibit extensive cracking


HIPR Applications

- Removes functional pavement distress not related to base or subgrade problems
- Improvement of the profile and cross slope
- Increases structure when necessary
- CIR cost savings for projects requiring full depth repairs
- Use may increase if current funding continues

HIPR Limitations

- Mat thickness of less than 3 inches
- Low oil content less than 4%
- Fabric
- Aggregates larger than ¾ inch

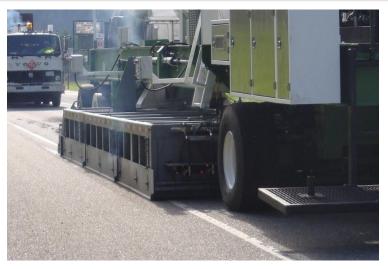
WSDOT HIPR History

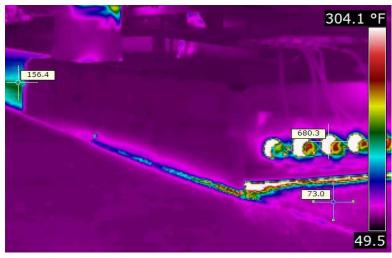
Jim Weston PE, Pavement Implementation Engineer, WASDOT

- 1995 HIR project
 - South Central region (Yakima) overlaid with OGFC
- HIR was considered in the past, but "things never worked out"
 - Existing fabric
 - High asphalt binder content
 - Traffic impacts

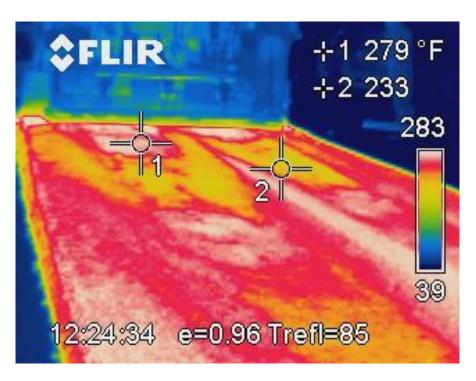
WSDOT HIPR History

2009 - SR 542, 31 lane miles ADT 5,400 to 12,500


- 0.40' to 0.60' HMA over 0.50' PCCP or 0.60' to 1.25' Crushed Stone Base
- HIR recycled 1.75 to 2 inches of distressed surface
- Conventional compaction equipment/roller pattern
- Constructed in 25 working days
 - Average 10 hour shift
 - 1.3 lane miles per shift


WSDOT Challenges with HIPR

Contractor's Experience (Equipment)



Contractor's Experience (Equipment)

Hot In-Place

224.0 °F 212.0 min 202.0 max 212.1 45.0

End Dumped HMA

220-230°F -- typical compaction temperature

HIPR Lessons Learned

- Less construction noise
- No abrupt lane edge during construction
- Reduced traffic disruptions
- Limited by geometrics turn lanes
- Night joints need to be sealed
- Total HIR cost \$180,000 lane/mile vs. \$250,000 lane/mile for traditional HMA mill and fill
- The SR 542 project shows there is potential for HIR in Washington State
- Life-cycle break-even cost is 12 years (based on typical 16 year HMA life in Western Washington)
- Use of Chip Seal or HMA overlay on future WSDOT projects

Top 10 Ways to Make HIPR Successful

10 :: Upfront communication has to take place

9 :: Review project prior to starting...cores, field review, patching locations

8 :: Mix design process...very important

7 :: Placing fog seal at construction joints is beneficial

6 :: Cover HIR with HMA or Chip Seal...experience indicates this could provide added life

5 :: Paving crew should pay attention...proper control of heater units is crucial

4 :: HIR is art and science...requires experienced contractor

3 :: This is not HMA...do not treat it like it is

2 :: Ask questions!

1 :: Work as a team...every job is very important for producing a quality final product!

Lessons Learned

Field Adjustments

- Adjust asphalt contents for variability in roadway
- Adjustment recommendation by Contractor's staff
- Monitor and document adjustments
- If raveling or rutting occurs...Contractor is responsible for corrective action

Lessons Learned

Recommendations

- All agencies would benefit from CIR/HIR in their pavement preservation
- Start slowly and keep raising the bar
- Get the contractors involved at an early stage
- Require the contractors to accept responsibility for their work

Continue improving the process

In-situ recycling is safe, efficient, environmentally friendly – meets the needs of present-day users without compromising those of future generations.

In-situ recycling technologies address the main criteria for sustainable pavement:

- 1. Optimizing the use of natural resources
- 2. Reducing energy consumption vs. HMA
- 3. Reducing greenhouse gas emissions and pollution
- 4. Improving health, safety and risk prevention
- 5. Ensures a high level of user comfort and safety

Less expensive than HMA option

Quality:
provides 15 to
20 years life
expectancy

Questions?

Sam Yaghmaie PE, LEED AP, Harris & Associates 206-898-5594

sam.yaghmaie@weareharris.com